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J. Phys. A: Math. Gen. 18 (1985) 2863-2891. Printed in Great Britain 

Realisation of Lie algebras and of representations of Lie 
groups in terms of harmonic oscillators? 

T Fulton 
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, 
Maryland 21218, USA 

Received 11 December 1984, in final form 24 April 1985 

Abstract. The algebras and irreducible representations (irreps) of compact Lie groups, 
including the exceptional groups, are realised in terms of sets of Bose oscillator (SHO) 
creation and annihilation operators. In particular, not only the tensor irreps, but also the 
spinor irreps of orthogonal groups of all ranks can be constructed using Bose (rather than 
the more customary Fermi) oscillators. 

1. Introduction 

Realisations of specific simple compact Lie algebras and at least some of the irreducible 
representations (irreps) of the corresponding groups in terms of Bose and/or Fermi 
oscillators have been extensively considered in the past, and have been found to be a 
useful tool in the analysis of a large class of physical problems. In particular, Schwinger 
(1965) has studied the generators and irreps of SU(2) in terms of two Bose oscillators 
(hereafter abbreviated SHO) to deal with angular momentum. These considerations 
have been extended (see Kramer and Moshinsky 1968) to U(n), and have found 
extensive applications in nuclear physics. Alternatively, the algebras of the classical 
groups (the unitary, orthogonal and symplectic groups A(n);  B(n), D(n);  C(n) )  have 
been realised in terms of Fermi oscillators. The spinor irreps of the orthogonal groups 
have been constructed in this scheme and have had extensive and successful applica- 
tions in the study of many electron atoms (Judd 1967, 1968, Wybourne 1974) and in 
particle physics (Casalbuoni 1980, Casalbuoni and Gatto 1980). 

The oscillator technique has also been fruitfully used in the case of specific 
non-compact groups, U(1 , l )  in particular, most recently by Alhassid et a1 (1983). 
They study the relationship of bound and continuum states and energy band structures 
to each other for various one-dimensional problems, and to related non-periodic and 
periodic potentials. 

A uniform realisation of the algebras of all classical Lie groups and of their tensor 
irreps is considered by a number of authors (Gilmore 1974, Quesne 1973, Lohe and 
Hurst 1971, 1974, Exner et ul 1976). All the references mentioned so far possess the 
common characteristic of having bilinear forms for the group generators. They are, 
in some papers, structures U T U ,  where a: and U, are SHO (or Fermi oscillator) creation 
and annihilation operators with appropriate hermiticity relations-( a,)+ = uI-and 
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commutation (anticommutation) relations. Alternatively (and preferentially) in the 
papers dealing systematically with the classical algebras and their irreps, the bilinear 
forms are constructed from p L  and q,. 

The spinor irreps of the orthogonal groups are the only ones which, to our 
knowledge, have been constructed for these groups using Ferini oscillators. These 
irreps involve various numbers of Fermi oscillator creation operators a:, one a: for 
each index i, for different elements of the same spinor irrep. Spinor irreps have also 
been constructed by Lohe and Hurst (1973) and by Lohe (1973), using the formalism 
of the boson calculus. For groups of low rank, the representation space of the covering 
group is used. More generally, these representations are constructed in spaces of 
harmonic homogeneous polynomials, by finding new realisations of the Lie algebras 
of the orthogonal groups. The method appears to be somewhat cumbersome in 
applications. 

There are other, nonlinear, realisations of Lie groups in terms of SHOS, specifically 
the SU(2) generators (Dyson 1956). This realisation is inconvenient for constructing 
irreps. 

The list of work referred to above is not even an attempt at an exhaustive survey 
of a very extensive literature. Further references to other work can be found in the 
papers already quoted. 

The points of departure of the present paper are the previous papers using SHO 

creation and annihilation operators. The work is entirely restricted to simple compact 
Lie groups. A unified approach is taken with respect to all groups. Generators and 
irreps are realised entirely in terms of Bose oscillators, even for spinor irreps. Our 
point of view grows from that of Dynkin (1950, 1957), of McKay and Patera (1981) 
and McKay et a1 (1977), as further developed in a collaborative effort by the author 
and two colleagues (Feldman et a1 (1981, 1984a, b), the last two hereafter called FFMa 

and F m b ,  respectively). The emphasis of this latter work is to carry out the Dynkin- 
Patera approach in an orthogonal root and weight space (with small and non-essential 
modifications required in the case of A(n)  and G(2)).  Such an approach leads to a 
concise and simplified treatment, with expressions which are more general and algebrai- 
cally explicit (e.g. for the phases of structure constants ( F F M a ) )  than those arising from 
weight and root spaces expressed in terms of a non-orthogonal basis. The practical 
Usefulness of this approach is demonstrated in FFMa and FFMb and will be further 
justified in what follows. The notation of FFMa and FFMb will be used in general in 
the present paper. Extensive use will also be made of the results of these references, 
but, in the interests of brevity, they will often only be referred to, rather than repeated 
here. 

The stage for the detailed discussion is set below in 0 2, in which much of the 
notation used later is defined and the group algebras and irreps are written down in 
terms of it. 

Section 3 is devoted to the realisation of the generators and of all the irreps of 
each classical group in terms of SHO operators. For purposes of illustrating the 
approach, particular emphasis is placed on the derivation of the results for the groups 
D ( n )  = SO(2n); a briefer treatment, emphasising only the results, is given for the other 
classical groups: B(n), C ( n )  and A(n).  

We must emphasise that we have nothing new to offer in the SHO realisations of 
the classical Lie algebras and nothing essentially new in the SHO realisations of their 
tensor irreps. They are treated briefly in order to illustrate further our notation and 
to motivate the changes in the formalism required to accommodate spinor irreps of 
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the orthogonal groups in our version of SHOS. This development is also the point of 
departure for the analysis of the exceptional groups in the next section. 

In § 4, the SHO approach is extended to the realisation of the generators and irreps 
of the exceptional groups. 

A brief summary and discussion of the salient aspects of the results is presented 
in § 5. 

2. Definitions and general considerations 

We shall begin by expressing all simple Lie algebras in the Dynkin basis (Dynkin 1957, 
FFMa, FFMb) in the form 

[H, HI = 0, (2.1) 

where the structure constant Na(p) , r r (q )  is non-vanishing for 

a ( m )  = 4 P )  + 4 s )  (2.5) 

a root. 
The vector N has n components, where n is the rank of the algebra; the operators 

E(rip(pi are step up (step down) operators in weight space. 
The magnitude of the structure constants (Wybourne 1974, Carter 1972) is the same 

for all groups with roots of the same length ( A ( n ) ,  D ( n ) ,  E(n)),  and also for B ( n ) .  
There are two magnitudes for the structure constants of C ( n ) ,  F(4) and G(2). The 
phase factor of No(p) ,a(q)  is defined as 

exp(iWp, 4 ) )  = ~ a ( p , , a ( q ) / l ~ a ( p i , n ( q i l .  (2.6) 

Detailed commutation relations, taking into account the magnitude of Na( p l . p ( q ) r  

have been written down for each specific type of simple compact Lie group in FFMa. 

These commutation relations also serve to define the various phase factors. They lead 
to Jacobi identities (Carter 1972) which, in turn, can be expressed as algebraic condi- 
tions on the phases. These conditions are displayed in FFMa. They do not determine 
unique phase choices. A particular solution for each phase is obtained in FFMa. All 
phases in these solutions are 0 or T :  

exp(i0) = i l .  (2.7) 

We shall adopt these phase choices in what follows and express our results in terms 
of them. 

The generators H are Hermitian. In addition, we impose the physically convenient 
restriction 

(2.8) 

We have a set of basis vectors, p p  in the orthonormal root and weight space such that 
E-o(  p )  = Eb, p ) .  

PP Pq = 8 P q .  (2.9) 
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We define the notation 

(2.11) 

(2.12) 

The normalisation condition for p p  in (2.9) differs from the treatment in F F M ~ ,  FFMb, 

so that we may avoid the later explicit appearance of the scale factor, s (defined in 
equations (4.13) and (4.17) of F F M b ) ,  in expressions for the generators. For A(n), we 
will need the set of non-orthogonal vectors x p :  

(2.13) 

with 
n + l  c x p = o .  (2.14) 
p = 1  

For G(2) we will need xp, with p = 1,  2, 3 as defined in (2.13). The roots for the 
classical groups are given in table 1 ,  and those for the exceptional groups in table 2 
of FFMa.  (For A,,, appearing in these tables, substitute p p ,  defined in (2.9) above.) 
Using this form of the root, we can simplify our notation for E,: 

(2.15) - 
ECLp-Pq = E(P-qJ 

Ef~-&cpfCLy+P‘+Pl) = E ! ( - p + q + r - s )  

for a typical ‘vector’ root and 

(2.16) 

for a typical ‘spinor’ root. (The example given in (2.16) is for a generator of F(4).) 
Such roots with ‘spinor’ weights (see F F M a )  appear in the exceptional groups E(8), 
E(7), E(6) and F(4). In terms of the definition, (2.15), we have the identity 

- 

(2.17) 

(2.18) 

and similar identities for spinor roots. 

vector, A, of the individual irrep element. For a given irrep element we have 
The notation for irreps is in terms of the Dynkin-Patera indices and the weight 

(2.19) HIA, [SI) = A b ,  [SI), 
E*,cp,lA, [SI)= CW, M P ) ,  [Yl)lA* d p ) ,  [SI) ,  (2.20) 

and C is a numerical function of its variables. The scalar irrep will be the ‘vacuum 
state’ and will be denoted by 

10, Eon = IO), 

where [ O ]  is the Dynkin-Patera symbol 

(2.21) 

[O] = (0 ,  0 ,  . . . , 0). 

Since most of the Dynkin-Patera symbols we will use will have a large number of 
zero entries, we will shorten the notation by denoting only the non-zero entries (except 
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for the case of [O]) and indicating their position by a subscript. Thus, we shall take, 
for example 

( 1 , 0 , 0 , 0 )  = [ I , ] ,  (0, 1,0,0) = [ 1 2 1 ,  ( 2 , 0 , 0 , 0 )  = [U, (1 ,0 ,0 ,  1) = [ 1 1 , 1 4 1 .  

(2.22) 

The SHO creation and annihilation operators will be denoted by 

il'*'+(3) and U ' " ' ( 2 ) ,  (2.23) 

where ( K )  and (2) are a single index and a set of labelling indices respectively. The 
operators have the usual commutation relations 

[ a ' " ' ( U ) ,  a ' K ' ) + ( 2 ' ) ]  = 8(2, Y')aKK,, 

[ a ( " ) ( 2 ) ,  a ' K ' ) ( 2 ' ) ]  = 0, 

[ U ' " ' + ( 2 ) ,  U ( " ' ) + ( 2 ' ) ]  =o,  
(2.24) 

where 8 ( 2 ,  U') is unity if all indices of 2 match those of U', and vanishes otherwise. 
The realisation we will seek for a given Lie algebra will be a suitably chosen linear 

superposition of the bilinear forms u ' ~ ) ~ ( = Y ) u ( ~ ) ( ~ ' )  for the operators E, ,  and H. The 
irreps will be realised by homogeneous polynomials (or monomials) of ~ ' ( 2 ) ' s  operat- 
ing on the 'vacuum state', IO). 

Additional new notation will be introduced later, as needed. 

3. Classical groups 

3.1. The groups D(n) 

We will carry out the analysis for these groups in some detail, since they present most 
of the features characteristic of the other classical groups. The latter will be treated 
subsequently, type by type, but in a more cursory fashion. 

3.1.1. Realisations of the algebra. We will gradually build up a hierarchy of realisations 
of the algebra of D(  n ) .  At each stage, the algebra will be correctly realised. However, 
each succeeding stage will allow for the possibility of realising more and more types 
of irreps, until, at the last stage, it will be possible to realise all irreps of D ( n ) .  

To begin with, it is useful to quote the detailed form of (2.4) for this case, as given 
in FFMa (together with a specific solution for the phase factors, obtained in that 
reference): 

where 

p , q ,  r = * l , * 2  , . . . ,  *n, p f q f r ,  

d ( P ,  4, r ) = & ( P + q ) & ( q + r ) & ( r + P ) ,  

E ( X )  = +1, x>o,  

E ( X )  = -1, x<o.  

and 

(3.4) 
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We attempt to realise the algebra by letting 

= O ( P ,  q ) { N ( p ,  9 ) -  N+(-P - q ) } ,  P f 4, (3.6) 

where e( p ,  q )  is a phase factor, the standard form of the number operator appears in 
(3.5) and other bilinear forms u t a  are defined as N ( p ,  q )  in (3.6). 

The algebra, defined by (2.1)-(2.3) and (3.1), and the additional conditions (2.8) 
and (2.17) yield conditions on B ( p ,  q ) .  However, the problem is so trivial, because of 
the factorised form of the phase d ( p ,  q, r ) ,  (3.3), that we can immediately guess the 
solution. It is 

e ( p ,  q ) =  E ( p + q ) .  (3.7) 

The algebra of D(n) is fully realised by the generators defined in (3.5) and (3.6) 
(with (3.7)). However, it will be apparent from the discussion of § 3.1.2 that only the 
elementary irrep? (which we will call f, for 'fundamental') associated with the 
'unbranched' terminal point of the Dynkin diagram of D( n ) ,  and related irreps (built 
up from the symmetric parts of the Kronecker products of this elementary irrep) can 
be generated in this scheme. In other words, using our abbreviated version of the 
Dynkin-Patera notation, only the irreps 

[TI = [hl, I =  1 , 2 , .  . . , (3.8) 

f = [ I l l  

can be constructed with SHO operators which appear in (3.5) and (3.6). 
The scheme can be generalised trivially to allow the realisation of all the basic 

irreps, with the exception of the two elementary spinor irreps, by introducing another 
index, K. (This fact will be demonstrated in § 3.1.2.) We thus realise the algebra by 
setting 

and 

4 p - q )  = E ( P +  4 )  C;Ip,,, ""'(P, 4 )  - N'"'*(-P, - q ) ) ,  (3.10) 
where 

~ = 1 , 2  , . . . ,  n-2. (3.11) 

The N'""s are obvious generalisations of N's  defined in (3.5) and (3.6) and X y p , q )  
means that the p and q indices are not summed over. 

In other words, we can now realise all the basic irreps generated from the antisym- 
metric parts of the Kronecker products of [ 1 I], or 

[TI = [I"].  (3.12) 

+ This nomenclature is defined in Dynkin (19571, p 346, or Wybourne (19741, p 116. The symbol T, is used 
for f i n  the latter. In Feldman er a /  (1981) and F F M A ,  we call f 'the quark', and use the symbol q for i t ,  
but since quarks can also be put into spinor irreps (Casalbuoni 1980, Casalbuoni and Gatto 1980), this 
earlier notation is not a felicitous one in the present context. 
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The last, and this time non-trivial, step in our hierarchy of realisations of the D(n)  
algebra is intended to allow for the realisation of the two elementary irreps associated 
with the two 'branched' end points. These are the elementary spinor irreps, which we 
will call o ( ~ ) ,  (see Dynkin (1957, pp 350, 351) and Wybourne (1974, p 121) where 
ulr uz instead of ( T ( ~ ) ,  ule) is used), 

u(o,=[1n-tl, u ( e )  [ 1 n I- (3.13) 

The subscript (0) ( (e))  denotes an odd (even) number of minus signs in the weights of 
the representation. 

We consider embedding the groupt D(n)  so that it is a non-regular subgroup of 
a group D ( N ) :  

JXN) = D(n),  n s 4 ,  (3.14) 

such that the fundamental irrep of D( N ) ,  fD(N), goes into the direct sum of the three 
terminal point irreps of D(n) ,  i.e. 

~ D C  N) + (fa (+(a, @ L+(e ) )D(  (3.15) 

From the dimensions of the various irreps involved, we obtain the condition 

N = n + 2 n - ' ,  n 2 4 .  (3.16) 

We encounter no special problem for the first non-trivial case, n = 4, for which the 
Dynkin diagram is symmetric, and for which any of the terminal points can be associated 
with any one of 

The problem of obtaining the generators of a group, g, as superpositions of the 
generators of a group of higher rank, 3, where g is a non-regular subgroup of 3, was 
considered in general and solved for a large number of specific cases in FFMb. We 
will employ the methods of this reference as much as possible. 

ule) or ulol. 

The root and weight space of D(N) can be defined by 2N orthonormal vectors 

p = i 1 ,*2 , .  . . , i n ,  

A ( p + q + r + .  . .), 
2n AP* 
2 ( N  - n )  = 2 "  

(3.17) 

p ,  q, r , .  , . = + 1 ,  i 2 , .  . , , i n ,  p f  q f  r f .  . . . (3.18) 

There are n separate labels p ,  q, r, . . . , (the sum total of index values is not relevant) 
and each distribution of plus or minus signs defines a unique A. The many-index A's 
are symmetric in the index labels. This property is incorporated by using plus signs 
between them. The analogue of (2.9) holds and (see (2.11)) 

A-, = -Ap, 

A ( - p - q - r . .  .) = - A ( p + q +  r . .  .). 
(3.19) 

We choose the projections 

h p  + CLp = ( P I ,  

A (  p + q +  r . .  .) + $ ( p p  +p, + p r .  . .) = i ( p  + q + r .  . .), (3.20) 

p ,  q, r , .  . . = * l ,  i 2 , .  . . , *n,  
t The results reduce to trivial ones in the cases n = 2, 3, for which there are no branched end points: for 
n = 2 ,  N = 2  and D ( 2 ) = A ( l ) B A ( l ) ;  for n = 3 ,  N = 4 ,  D(3)=A(3)  and D ( 4 ) 3 B ( 3 ) 3 D ( 3 ) ,  so that D(3) is 
a regular non-maximal subgroup of D(4). 
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where the p p  define the weight and root space of D(n).  (The convenience of using 
summation signs for the independent labels in A is now apparent.) From (3.20), the 
projection of the roots D( N) to the roots of D( n )  is 

(3.21) 

Thus, 

1 +; . 2"-2 = 1 +2n-3 (3.22) 

roots of D(N)  project into a single root of D(n).  Each of the generators, E(,-,,, of 
D( n )  will be a linear superposition of the 1 + r3 generators of D( N), corresponding 
to the D ( N )  roots listed in (3.21). A given component of H of D(n)  will also be a 
linear superposition of 1 + 2"-' components of the &' of D( N). 

Indeed, we explicitly have 

& ' = x A p X ( p ) + C A ( p + q + r .  . . )  X ( p + q + r  ...), (3.23) 

where there are a total of 2 n  + 2" terms in the two sums. 
If we define H as 

(3.24) 

we obtain from (3.20) (Z;,, below means that the index p is not summed over) 

H ( p ) = ~ e ( P ) + t C ; , ,  XP(p+q+r . . . ) .  (3.25) 

H has n independent components, as it must. 
So far, we have followed the derivation of F F M b  step by step. It is at this point 

that the present approach diverges from that of FFMb, and we gain a considerable 
advantage over FFMb by using SHO operators. In order to determine the coefficients 
of the D ( N )  generators appearing in E ( , - , , ,  we must make use of the equations 
(2.1)-(2.3) and (3.1) which determine both the algebras of D(N) and of D(n).  But, 
in order to make use of (3.1) for D(N), i.e. to evaluate d ( p ,  q, r ) ' s  which appear in it, 
we have to associate a single numerical index, a single 'address', with the n index 
symbol which is the argument of A (  p + q + r + . . .). This is a daunting task for arbitrary 
n. On the other hand, if we think in terms of SHO realisations of the generators, we 
have no such problems, since the algebra of SHO'S, equations (2.24), replaces the 
algebra of D ( N )  (in particular (3.1)) in our considerations. There is no phase in 
equation (2.24) and thus the 'address' problem is circumvented. We still have the 
phases of the superposition coefficients to obtain, but these are determined by the 
algebra of D(n),  for which there is no 'address' problem to begin with. We therefore 
take, as the final version of the D(n) algebra realisation, the generators (3.24), with 

(3.26) 
~ ( p +  q + r + .  . .) = a+( p + q + r + .  . . ) a ( p  + q + r + .  . .), 

and 

E , , - , , = ~ ( p + q ) C r , , , , ~ ~ ' " ' ( ~ ,  q) - "" '+( -P ,  - q ) }  

(3.27) 
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where Z:;6,q, is defined below (3.10) and 

~ ( p  - q ;  r +  s+. . .) = a + ( p  - q +  r +  s+. . . ) a ( - p +  q + r +  s +.  . .). (3.28) 

The other new symbol in (3.27), + ( p ,  q ;  r, s, . . .), is a newly introduced phase factor. 
To save time, we have postulated a form for E ( p - q )  which already takes into account 
some features of the D(n)  algebra: the fact that one phase is ~ ( p  + q )  and that I + I  = 1. 
We impose the subsidiary conditions (2.8) and (2.17) on E i p - q , ,  as given in (3.27). 
We then demand that H, equation (3.26), and E(,-,,, equation (3.27), satisfy the D ( n )  
algebra, (2.1)-(2.3) and (3.1). These requirements result in the following conditions 
on the phases, +: 

+ ( p ,  q ;  r, s, . . .) is symmetric in ( p ,  q )  and in ( r ,  s,. . .), 
+ ( p ,  q ;  r, s, . . .) = + ( - p ,  - 9 ;  r, s . .  .) = - + ( p ,  q ;  - r ,  -s , .  . .), 

(3.29) 

(3.30) 

and 

d ( p ,  q, r )  = - + ( p ,  q ;  r, s, . . .)4(q, r ;  P, s,. . . ) + ( r ,  P: 9, s,. .), (3.31) 

as well as other equations which can be derived from (3.29)-(3.31) and therefore will 
not be listed. The equations (3.29)-(3.3 1) are algebraically identical to the conditions 
on the structure constant phases derived for the algebras of the groups E(8), E(7), 
E(6) and F(4) in+ FFMa.  We do possess explicit solutions in this reference of equations 
(3.29)-(3.31) for the phases $(,) for n = 4 ,  6, 8 and I++,) for n =4 ,  5 (as well as the 
phase x for B(4), which is defined below). Since F(4) 3 B(4) 3 D(4), E(6) 3 D(5)O 
U(1), E(7) 3 D(6)OA(1)  and E(8) 3 D(8), these phases appear in the algebras of the 
larger groups. It is not difficult to generalise these solutions to arbitrary n, ( n  5 4). 

n odd:  

+(P, 4 ;  r,s, 1 . .  . ) ( e , = - l - I ; I p . 4 )  ~ ~ l ~ l - l ~ - l ~ ~ ~ l q l - l ~ - l ~ ,  

The results are, 

(3.32) 

(3.33) 

The subscripts (e) ((0)) indicate an even (odd) number of minus signs in all of the 
indices of 4. The symbols l+(lL) are the values of the positive (negative) indices, and 
II;6,,, indicates that p and q are excluded from the product over the 1- or I ,  indices. 
n even: 

(3.34) 

(3.35) 

+(P, 4 ;  r, s, t .  . .LO) = +rI;p,,) &(/PI - (l+ l )&( lSI  -l1+l), p ,  q # I + ,  I - .  

Ccr(P9 9 ;  rr s, 1, . . . 9 - n )  = -n;p,q,-nl &(/PI  + o & ( l q /  + 11, 

+(P, 4 ;  r,s,  t , * . . , + n ) = + n ; ’ p , q , + n ,  &( Ip / -1 )E( lq l - / ) ,  

p,q=*1,*2  , . . . ,  * ( n - 1 ) ;  P , 9 # 1  

with n;Ip,s,-n, an obvious generalisation of I I y p , , )  above. 
The list of phases continues with 

(3.36) 

+ ( p ,  n ;  r , s ,  t . .  . ) = ( - ~ ) ~ + ’ + ( p ,  - n ;  r ,s ,  t . . . ) ,  (3.37) 

t See F F M ~ ,  equations (8 .20)  a n d  (B.21)  for E (8 )  and  E(71, E(6 )  and  (B .24)  and  (B.26) for F ( 4 )  



2872 T Fulton 

where r, s, t are numerically ordered: 

r < s  <It1 <. . . , 
and (3.38) 

p ,  r, s, It \ ,  . . . = 1,2 , .  . . , n - 1. 

The remaining phases are fixed by the condition 

$ ( p ,  - n ;  r, -s, - t ,  - U , .  . .)= - + ( p ,  - n ;  r, s, t, U , .  . .), P, r, s > 0, (3.39) 

and one of (3.30), 

$ ( p ,  - n ;  - r ,  -3, - t , .  . .) = - + ( p ,  - n ;  r, s, t , .  . .), p ,  r > 0 .  (3.30) 

We may note that for 

n = 41, l = l , 2 , 3  , . . . ,  (3.40) 

the numerical ordering, (3.38), and the requirements r > 0 ,  s > O  and (3.39) are not 
necessary in the phase definitions (3.36) and (3.37): (3.30), (3.36)-(3.39) will in any 
case be automatically satisfied. However, for n values 

n=41+2,  l = l , 2 , 3  , . . . ,  (3.41) 

this is not the case. The conditions as stated in (3.30), (3.36)-(3.39) cover both of 
these situations. 

We do not wish to stress the tedious details of the expressions (3.32)-(3.39). Suffice 
it to say that we have demonstrated the existence of solutions, with real phase factors, 
to (3.29)-(3.31), for arbitrary n. Equation (3.31) requires the discovery of a factorised 
form, other than (3.3), for the same  phase factor d ( p ,  q, r )  as appears in (3.3). 

3.1.2. Realisations of the irreps. We note the commutation relations 

[ H ,  a (K) ' (  p ) ]  = ppa(*)+(  p ) ,  (3.42) 

[ H , a ' ( p + q + r +  ...)]=~(Cc,+Cc,+CL,+...) a + ( p + q + r +  ...), (3.43) 

[ H ,  a ( K ) t ( p ) a ' A ) t ( q ) ]  = ( ~ p + ~ q ) a ' K ' t ( p ) a ' A ' t ( q ) ,  (3.44) 

[ E ,  p - 4 ) r  a' " ' (q) ]  = U ' " ' + (  p ) .  (3.45) 

They follow from the commutation relations (2.24), together with the definition of 
the components of H, equation (3.26), and of E,  p - q ) ,  equation (3.27). They, and similar 
equations, are required in checking that the states we are about to define satisfy the 
equations of (2.19) and (2.20). 

We now have the following irreps: 

Scalar irrep 

10, [ O D  = IO), 

defined by 

(2.21) 

(3.46) 
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The three elementary irreps. They are given by 

(3.49) 

See below (3.13) for the definition of (0) and (e). 
The irrep f is defined redundantly, for any fixed value of K .  The ( n  - 2) fold 

redundancy is trivial: a 2n-dimensional vector r") is as good a vector as a 2n- 
dimensional vector r'". 

The remaining basic irreps. The adjoint, a, is given by 

a:  / ( P p  -Pq), [ 1 2 1 ) = 2 - 1 / 2  def(K,,1(2) ~ 'K"(p)~ '" ' ' t ( -q)~o) ,  (3.50) 

where 

d e t ( K , , K 2 J  a'"l)+( p)a(,2Jt ( - 4 )  = a'"l'+(p)a'"Jt(-q) - ( K ~ + + K * ) .  (3.51) 

As in the case of f ;  there is a redundancy in the definition of the adjoint. There 
are $( n - 2)( n - 3) different realisations of it, corresponding to the choice of different 
( K ~ ,  K ~ )  pairs. 

The irrep [13]  will correspond to a det,,,,,,,,,, over three at's, and so on. The 
redundancy will disappear for [ln-4. The number of K indices were chosen so that 
this last basic irrep could be constructed. 

All other irreps. All the other irreps can be constructed from Kronecker products of 
the basic irreps. We follow a slightly different route. We construct outer products of 
different a t  combinations, rather than states, obtaining irreducible subsets of them in 
a manner completely analogous to the reduction of Kronecker products for states. We 
then allow the resulting homogeneous polynomial in at's to operate on the vacuum state. 

This procedure will give rise to further redundant irreps. For example, the state 

is a possible realisation of the scalar irrep. This fact can easily be checked by applying 
H and all the step-up and step-down operators E ( p - q j  to this state. 

This type of redundancy is not as trivial as that previously discussed, which was 
related to the ( K )  superscripts. In order to eliminate it, we will append the rule that 
the irreps must be realised in terms of the minimal number of at factors operating on 
the vacuum and the minimal number of ( K )  indices. If more complicated forms arise, 
say in the reduction of a Kronecker product, they must be replaced by the simpler 
forms. Thus, for the state considered in (3.52), we must make the replacement 

We will call this process 'SHO reduction'. 
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A typical non-basic irrep which is an intrinsically two particle state and cannot be 
SHO reduced further is 

(3.54) 

The leading factor in (3.54) is a normalisation factor which differs from unity for 
elements of weights 2pp and 0. The latter elements are defined symmetrically, but 
redundantly, so that 

c IOp, PI] )  = 0. (3.55) 
P 

Thus, there are n - 1 independent elements with weights 0. Since there are, in addition, 
(;) . 2'= 2n(n - 1) elements with weightsp, -p4,  IpI # 141, and 2 n  elements with weights 
2pp, there are a total of 

dim[21]D(,) = n(2n + 1) - 1 

elements in this irrep, the desired result. 
We also note that there is only one independent superscript K in (3.54), rather than 

two, K ]  and K' .  We could have used two superscripts, but would then have had to 
specify a reduction of the products, and kept only the symmetric ( K ~ ,  K ' )  combinations. 
We will always take equal K limits for such symmetric combinations, using our 
previously stated SHO reduction rules. 

We have thus exhibited, or indicated a method of constructing, each of the irreps 
at least once. 

(3.56) 

3.2. The groups B(n) 

3.2.1. Realisation of the algebra. Since the elementary irrep f has n - 2 antisymmetrised 
basic irreps associated with it, rather than n - 3, as in the case of D(n) ,  (3.1 1) is altered 
to 

K = 1 , 2  , . . . ,  n-1. (3.57) 

In addition to the D( n )  generators, there is a new set of generators, E( pl. Additional 
sets of commutators of type (2.4) exist (see FFMa, equations (3.9) and (3.10), with a 
specific set of phase solutions, (3.11)). H and H ( p )  have the same forms as in D(n)  
(see (3.24) and (3.25)), as do the generators E ( p - q l  (see (3.27)). 

E ( p J = X I , j  {""'(p,  o ) + N ' " ' t ( - p ,  O ) + X ( p ;  99 r . .  . ) N ( p ;  q + r . .  

where 

The new generators are given by 

(3.58) 

~ ( p ;  q + r +  . . .) = at(  p +  q + r + . . . ) a ( - p  + q + r + . . .I, (3.59) 

and where X (  p ;  q, r .  . .) are new phase factors, and we have also introduced another 
set of n - 1 Bose oscillators [a""(O) and a'"'(O)], associated with zero weight vectors, 
Different labels are once again taken to have different values. The commutators of 
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the algebra and the subsidiary conditions (2.8) and (2.17) yield the new phase conditions 

(3.60) 

(3.61) 

(3.62) 

x ( p ;  q, r . .  .) 

x ( p ; q , r  . . .  ) = x ( - p ; q , r  . . .  ) = - x ( p ; - q , - r  . . .  ), 
$ ( p ,  q ;  r, s . .  .) = - E ( p + q ) x ( p ;  q, r, s . .  . ) x ( q ; p ,  r, s . .  .). 

is symmetric in ( q ,  r, . . .), 

A set of solutions for the new phases is 
n o d d :  

x ( p ;  9, r . .  .)(e)=-l-I;p) &(lPl- l~- l )9 

x ( p ;  q, r . .  . ) ( 0 )  =II;p, ~ ( l p l  -ll+l), 

(3.63) 

(3.64) 

rI[pl is defined analogously to n;I,,,, below (3.33). For the definitions of I ,  and 
I - ,  see the text following (3.33). Of course in the present case, because of (3.61), (e) 

p # I,, I - .  

and (0) refer to the indices other than p .  
n even: 

x ( p ;  q, r, . . . , - n )  = -n" ( p , - n )  E(IPI + 0, 
x( P ; q, r, . . . , + n )  = rI;p,n ) E ( I  PI - 0, 
p = + 1 , * 2  , . . . ,  * ( n - 1 ) ; p f l .  

The remaining phases are 

x ( i n ; p ,  q, r, s . .  .) = - H' ( * n )  E ( / +  m ) ,  P, 4, > 0, 

p <  q <  r <  I s /  <. . ., 
/Il<lml 

p ,  q, r, I s I , .  . . = 1,2 , .  . . , n - 1;  

x ( * n ; p , q , - r , - s  ...)~-x(* n ; p , q , r , s  ...), 

x ( * n ; p , - q , - r  ...)~-x( ~ n ; p , q , r  ...), 

x ( * n ;  - p ,  -9, - r . ,  .)E - X ( * n ; p ,  q, r . ,  ,), 

with 

P, 9, r' 0, 

P1 4 > 0,  

p > o .  

(3.65) 

(3.66) 

(3.67) 

(3.68) 

Note that, in analogy with (3.36) and (3.37), p ,  q, r, . . . are taken in numerical order 
in (3.67) and (3.68). As in the case of D(n), these requirements, (3.68) and the positivity 
conditions on the indices p ,  q, r are only needed for the case of n = 6, 10, 14, , . . . For 
the case of n = 4, 8, 12,. . . (3.68) is automatically satisfied, even if these conditions 
are not imposed. 

The x's are obtained from the $'s essentially by factorising the latter (see (3.62)). 

3.2.2. Realisations of the irreps. The changes from the D ( n )  case are trivial. We note 

[ H ,  U ( ~ ' + ( O ) ]  = 0. (3.69) 

Scalar irrep. Equations (2.21) and (3.46) hold. Note that the set 2 includes 0, and 

K = 1 , 2  , . . . ,  n - 1 ,  p = *l,  1 2 , .  . . , * n .  (3.70) 

The two elementary irreps. f: (3.47), and an additional element 

IO, [111) = a'"'+(O)lO), (3.71) 

(+: (+ = (+(,)@ (3.72) 
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where ( + ( e )  and (+ (o )  are given in (3.48) and (3.49). These results were to be expected, 
since B( n )  3 D(  n ) .  

The other irreps. They are identical to those defined in connection with D( n ) ,  provided 
the set of labels is extended, as indicated in (3.70). 

3.3. The groups C(n)  

3.3.1. Realisations of the algebra. This is the simplest of all classical groups to treat. 
There are no spinors, and all irreps can be constructed from f, with the other basic 
irreps being a total of n - 1 associated antisymmetrised irreps (with suitable vanishing 
trace conditions). Thus we require 

~ = 1 , 2  , . . . ,  n. (3.73) 

The algebra in this case leads to phase solutions which are entirely different from 
those of D ( n )  and B ( n ) .  (For the commutation relations in which the phases are 
defined, see FFMa, equations (3.12)-(3.14), and for specific solutions, equations (3.1.5) 
and (3.16). Note the error in (3.16): 6 ( p ,  q )  should read 6 ( q ,  p ) . )  The generators H 
are given by (3.9) (noting (3.73)). The structure of the E ( p - q l  generators is the same 
as in (3.10). They, and the generators E(,,,, are given in detail by 

4 P - q )  =;cl + E ( P ) - F ( q ) + E ( P ) E ( q ) )  

EOp) = 47 Lip) ""I( P ,  - P ) ,  

xc; lp ,q)  { & ( P ) " " ) ( P ,  d - & ( d " " ' + ( - P ,  (3.74) 

p = i l . ,  1 2 , .  . . , i n .  (3.7.5) 

3.3.2. Realisations of the irreps 

Scalar and elementary irreps. The scalar and f irreps are those given for D ( n )  (but 
note (3.73)). 

The remaining basic irreps. The only minor difficulty for C ( n )  arises here, since the 
antisymmetric parts of Kronecker products are reducible. We illustrate for two irreps, 
which make the general pattern clear. The irrep constructed from the antisymmetric 
product of two at's is 

I 1 
a'"~' ' (p)a '""' ( -p)  - ;xrK, ,K21 a 'Kl ' i ( l )a i42 ) ' ( - l )  IO). (3.766) 

The zero weight elements are defined redundantly, with the single condition 

( 3 . 7 6 ~ )  
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so that, since p = q is excluded, we get the expected number of elements for the irrep: 

dim[ 12]t(n) = (:)2’+ n - 1 = 2n2 - n - 1. (3.77) 

The irrep constructed from the antisymmetric product of three aT’s is 

lPI f: 141. (3.78b) 

The p p  weight elements are defined redundantly, with one condition for each p ,  

c I(% + O q ) ,  [131) = 0 ,  IPI + 191, ( 3 . 7 8 ~ )  

or 2n conditions in all. We again get the expected number of elements for this irrep: 
4 

dim[ 1,],(,, = ( y )  9 23 + 2n(  n - 2 )  = zn( n - 2 ) ( 2 n  + 1). (3.79) 

The method for constructing all other basic irreps is now apparent. 

The adjoint irrep. We illustrate only this single non-basic irrep. It is 

I(p, -pqL [ 2 , I )  = (1 + ~p,-q)-”2a(IC1i(p)a(K’+(-q)I~),  (3.80) 

with (i) . 2* elements 1pI f 141, 2n elements p = - q  and n zero weight elements, or, as 
expected, 

dim[2,],,,) = n ( 2 n  + 1). (3.81) 

3.4. The groups A ( n i  

The added complication here is that the basis space of A(n is defined in terms of 
n + 1 orthonormal basis vectors p p  There are again no spinor rreps and  all irreps can 
be constructed from a singlef; with weights xP, where xP is defi-led in (2.13). However, 
we prefer to discuss this case using two elementary irreps, f with weights xP, and f 
with weights -xP. The treatment of the adjoint irrep as well as of G ( 2 )  generators is 
more natural in such an  approach than in one based on the construction of the irreps 
from a single f: 

3.4.1. Realisation of the algebra. The generators in H, where 

H = c XpH( PI, 
are 

(3.82) 

so that H has the expected n, rather than n + 1, independent components. 
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The step up or step down generators are 

4 p - q j  =c;,,,, [""'(p, 4 )  - ""'b, -411, 

with 

p , 4 = 1 , 2 , .  . . , n + l , o r - 1 , - 2  , . . . ,  - ( n + l ) ,  

K = 1,2, .  . . , [n/2], 

(3.84) 

(3.85) 

n even, 
n odd. 

3.4.2. Realisations of the irreps. We note that (3.42)-(3.44) are modified by the 
replacement 

P p  + x p :  [Y a'""(p)I = X,"""(P), etc. (3.86) 

Scalar irrep. This is defined as for D(n) ,  but with index ranges as given in (3.85). 

The two elementary irreps. We have 

The other basic irreps. They are obtained by taking the antisymmetric parts of the 
Kronecker products of a(" ) ' (  p ) ' s  or a'" ' ( -p) 's .  For n odd, both ~ ' " ' ( p )  and a'"' ( -p)  
products lead to the same irrep for [l(n+1)/2]. 

The adjoint irrep. All other irreps can now be constructed. However, because of the 
special role it plays, we once more specifically give the adjoint irrep. It is 

P f 4, I(xp -&I ,  [11, I.])= l(Pp - P q L  [11, I.])= ai~) t (p)a(Kjt(-q) lO),  
( 3 . 8 9 ~  ) 

p , q , l = l , 2  , . . . ,  n + l ,  (3.89b) 

with the redundancy 

4. Exceptional groups 

( 3 . 8 9 ~ )  

Our emphasis in this section will be on the realisation of the algebras. The treatment 
of the irreps will be much sketchier than for the classical groups. We will give explicit 
expressions at most for the elementary irreps, often not even for all of these. However, 
for every exceptional group, the irreps given will be sufficient to generate all other 
irreps through Kronecker products. 
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The strategy we follow is the same as that which led to the realisation of the D(n) 
and B ( n )  algebras, yielding spinor irreps in terms of Bose oscillators: we embed each 
exceptional group of rank n, g,, in an  orthogonal group gN of higher rank, such that 
N is as small as possible a r d  g, is a non-regular subgroup of (eN. It must be emphasised 
in this connection that, in obtaining the phases which appear, those algebraic conditions 
in (2.4) for which the structure constants vanish can play an  important role. In general 
they d o  not lead to additional independent constraints on the phases. However, in 
the case of F(4) and E(8), where the lowest dimensional elementary irreps contain 
more than one vanishing weight, such relations play a crucial role and lead to complex 
phase factors. These relations are spelled out in detail in FFMb,  equations (4.52) and 
(4.53), and figures l ( a )  and l ( b ) .  They are applied to specific cases in appendix A of 

We consider each of the exceptional groups in order of increasing rank, and 
emphasise results, rather than the details of the ways in which these results have been 
obtained. We d o  this both for the sake of brevity, and  because the approach we follow 
has been adequately illustrated in FFMb and in our present 5 3.1. 

FFMb.  

4.1. G(2) 

4.1.1. Realisation of the algebra. We note that 

and that the relation 

[ I l l  + [ I 2 1  

f + fi 

7 7  
(4.2) 

holds, where f l  is one of the two elementary irreps of G(2). The other is f 2 ,  where 

dim f 2  = 14. (4.3) f =  - r-a=[111, 

The LHS of the relation (4.2), and similar relations for the other exceptional groups, 
refers to the group of higher rank, %N, and the RHS to the group of lower rank 
g,( gN 2 g,, non-regular). The first row gives our version of the Dynkin-Patera indices; 
the second row repeats this information in terms of the symbols for the elementary 
irreps; the third row gives the dimension of the irrep listed above it. 

We now project from the A weight space of B(3) to the p weight space of G(2), 
analogously to the method followed in § 3.1:  

o + o  
3 7  (4.4) 
1 -  

A p + x p = C L p - -  c Pq, p = *l, +2,*3. 
3 q = l  

Because of (2.14), the actual weight space of G(2) is two-, and not three-dimensional. 
The resulting generators, with the appropriate phase solutions, are 

H = c X p H ( P ) ,  (4.5) 
with 

(4.6) 
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(4.7) 

+ (-1)"+'E(-q+ r ) ( W K ' ( - q ,  r )  - M K ) + ( q ,  - r ) ) ] ,  (4.8) 

with p ,  q, r in (4.7) and  (4.8) all positive or  all negative, p # q # r and p ,  q, r in (4.8) 
cyclic. 

As indicated in some of the explicitly written sums above, K has the values 

K = 1, 2. (4.9) 

4.1.2. Realisation of the  irreps. The scalar and [ 12] =fl irreps have the, by now, familiar 
forms, in analogy with the classical groups. The adjoint irrep is generated from the 
Kronecker product of two ai's 

[ 121 0 [ 1 2 1  = [OIO [ 1230 [l  1 3  0 [2,1 

f I 0 f i  = 5 Of1 Of2 OS(2fl)  (4.10) 

49 = 1  + 7  +14 +27. 

The symbols introduced here are s = [ O ] ,  for the scalar irrep, and S(2fl) for the irrep 
constructed from the symmetric product of two fl's. The notation A(2f) and (flf2), 

to appear subsequently, denotes irreps constructed from antisymmetric products of 
two fs, and from products of f l  and f 2 ,  respectively. Using (4.10), we have for the 
irrep f2: 

1 
l(x, - x q ) ,  El1]) = (*I - det,,,,, a'"'(p)a"''(-q)Io), p ,  4 = ( + I  ( 1 ,2 ,3 ) ,  a 

( 4 . 1 1 ~ )  

1 lx,, [11]) =- d e t ~ l , 2 , [ ~ a ' " ' ( p ) a ' 2 ' ~ ( 0 )  & 
+ (-1),+'&(-q + r ) ~ " ' ~ ( - q ) a " " ( - r ) ] ~ ~ ) ,  (4.11b) 

( 4 . 1 1 ~ )  

We call attention to the appearance of relative phase factors in (4.1 lb) .  The elements 
of vanishing weight are, as in (3.89b), defined redundantly (see ( 3 . 8 9 ~ ) ) .  There are 
only two independent ones. 

All other irreps can be constructed from fl  by Kronecker products. 

4.2. F(4) 

From this point on, all the exceptional groups will contain roots with spinor weights. 
The trick of associating Bose oscillators with such weights, whether in irreps, such as 
those of D( n )  and B( n ) ,  or  in the generators themselves, is the same one: one must 
find a group D(N) in which the exceptional group can be non-regularly embedded. 
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In the present case, we have 

W 1 3 )  2 F(4), 

and the relation 

[ 1  I 1  + [I41 

f +SI 

26 26. 

The other elementary irrep of F(4) is fi, 

2881 

(4.12) 

(4.13) 

f2=a=[1 , ] .  (4.14) 

In what follows we will choose index labels p ,  q, r, s = + l ,  1 2 ,  +3, 1 4 .  Label 

The F(4) generators in terms of SHO operators are as follows. 
The generators in H, where 

x = *13 is such that the A space to j.t space projection of A I 3  is A13+  0. 

= c j . t ,H(P) ,  (4.15) 
are 

(4.16) 

Note that, while previously multi-index symbols such as N'"'( p + q + r + s ) ,  defined 
in (3.26), did not carry the additional superscript index ( K ) ,  here, and from here on, 
they will. The corresponding SHO operators will also carry this ( K )  superscript. The 
superscript is necessary for these terms in all of the exceptional groups, since otherwise 
the algebra is not closed. 

The factor $ in (4.16) is traceable to the appearance of spinor weights among the 
F(4) roots. 

The generators corresponding to roots of non-vanishing weight, with phase solutions 
explicitly given, are 

1 
2 

~ ( p )  =E;,, N ' * ) ( ~ ) + - E ; , ,  N ' " ' ( p + q + r + s ) .  

(4.17) 

+ c ; , , x ( p ;  q, r , s ) [ N ' " ) ( p ;  q + r + s ) - N ' " ' ' ( - p ;  - q - r - - s ) ]  , 1 
x = *13, (4.18) 

with N'"'(  p : q + r + s )  defined in (3.59), 

E ; ( P + 4 + r + s ) = -  ( e i a ( x ) p [ N ( * ) ( p + q + r + s , x )  
1 
a~=l x=+13  

4 

+ ~ ' ~ ) * ( - p  - q - r - s, -XI] + 1 x ( l ;  r l ,  r2, r 3 )  
I f ( = l  

(4.19) 



2882 T Fulton 

The l / &  factors in (4.18) and (4.19) can be traced to the fact that, in our units, the 
roots ( p  - q )  have length A, while the roots ( p )  and f( p + q + r + s)  are of unit length. 

In the above equations K = 1,  2, 3, 4, 1 is an element of the set p ,  q, r, s and r l ,  r2,  
r3 are the remaining elements. 

The new expressions which appear in (4.19) are 

eip = f( 1 + i d ) ,  (4.20) 

N ' " ' ( p + q + r + s ,  x) = a ' K J ' ( p + q + r + s ) a ' " ' ( x ) ,  (4.21) 

and 

iV'K)(-~lrl+ r 2 + r 3 )  

= u ( ~ ' + ( - - I +  r , +  r,+ r 3 ) a ( K ' ( - l ) ,  1, r , ,  r,, r3 = * I ,  . . . , *4. (4.22) 

The remaining phase factors E ( P +  q ) ,  4 ( p ,  q ;  r, s)  and x ( p ;  q, r, s)  are identical 
to the phase factors E ,  IC, and x defined in connection with our previous discussions 
of D(4) and B(4) SHO realisations. Indeed, 

$(P, 4 ;  r, s)=f(p, 9 ;  r, SI, x ( p ;  9, r, s)= +(Pi 9, r, s), (4.23) 

where f and C$ were given in FFMa. 

with the occurrence of two zero weight elements in the irrep f l  of F(4). 

The irrep f 2 =  a is generated from the Kronecker product of two fl's: 

We note the appearance, for the first time, of a complex phase factor eip, associated 

The scalar andf, irreps have the familiar forms, in analogy with the classical groups. 

[14Io[14I=[1oIo[14Io[11Io[13I @[24I 

f ,O f i  = S  Of1 Of2 OA(2fl)OS(2f,) (4.24) 

676 = 1 +26 +52 +273 $324. 

All the other irreps can also be constructed from Kronecker products off,,  but we 
will not explicitly display any of them. 

4.3. E(6) 

E(6) and E(7) are the simplest of the exceptional groups to treat. All of their 
non-vanishing roots are of the same length, and their lowest dimensional elementary 
irreps have no zero weight elements. 

4.3.1. Realisation of rhe algebra. The simplest embedding of E(6) is to choose 

W27) 2 E(6), (4.25) 

with the relationships 

~ ~ 1 1 + ~ ~ 1 1 @ ~ ~ 5 1  
f + f , @ f * ,  fi = T I .  - 
54 27 27 

(4.26) 

It is convenient to introduce an unnormalised P6 basis vector (see F F M ~ ) :  

cL6 * P6 = +, Pp' P6'0, PP * Ps = a,,, p =  1,. . . , 5 .  (4.27) 
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In what follows, we will choose index labels p ,  9 . .  . , t = *l, . . , , * 5  and x = *6. 
The E ( 6 )  generators in terms of SHO operators are as follows. 
The generators in H, where 

H L L , H ( ~ ) + L L ~ [ H ( ~ ) - H ( - ~ ) I  (4.28) 

are 

~ ( p )  = xipl N'"'( p + x )  +f xi,) ~ ' " ' ( p +  q +  r +  s + t + x ) ,  (4.29) 

and 

H ( 6 )  = N'" ' (  p + 6 )  +xi6, N'" ' (  p + q + r +  s + t + 6 )  + 2 x 1 6 ,  N ' " ' ( 2 ( 6 ) ) ,  (4.30) 

(4.31) 

The generators corresponding to roots of non-vanishing weight, with real phase 
factors, and  explicit solutions given, are 

E ,  p - q )  = E (  p + q )  ~~ , , , ,  ~ ( x ) [ N ' " ' ( p  + x, q + x )  - N'"'(-P -4  - 4  - X ) 1  

+ ~ ; I , . , , ~ ( p , q ; r , s , r ) [ ~ ' " ' ( p - q ;  r + s + t + 6 )  

- N ' " ' ( p  - q ;  - r  - s  - t -6)], (4.32) 

5 

E { $ (  p + q + r + s + r ) 6 ( r J ~ 1 6 l }  = C [""'(P + + r +  + t ( T ) @ )  
* = I  

5 5  

+ ~ ' " ' ( - p  - q - r - s  - t ( * ) @ ) ] +  1 

x [ N ' " ' ( - / l r , +  r2+r3+r4(*)@) - W K J ' ( / I - r l  - r 2 -  r 3 - r 4 ( ~ ) @ ) ] ,  

1, r , ,  . . . , r4= *l, . . . , *5, 

~ ( 1 ;  r l ,  r2, ri, r4) 
K = l  1 - 1  

(4.33) 

with the upper (lower) signs taken together, and with the following minus sign parities 
of the indices: 

f ( p  + q + r + s + t ) ( i ) $ ( 6 )  

N ' " ' ( .  . .), a' " ' ( .  . .) 
overall odd, including 6 

overall even, including 6 .  
(4.34) 

The following new N'" "s and their definitions are 

~ ' " ) ( p + x ,  q + x )  = a ' " ' + ( p + x ) a ' " ' ( q + x ) ,  (4.35) 

N ' " ' ( p +  q + r + s +  t ( r ) @ )  = a'"'( p + q + r + s + t (  I ) 6 ) a ' " ' ( T ) 2 ( 6 ) ) ,  

and 

(4.36) 

N ' " ) (  - I  I rl + r,+ r3 + r4( *)@) 

We note that, in order to construct all irreps, we must take 

a'loi( -1  + r ,  + r,+ r3 + r4 (* )6 )a 'KJ(  -1 (T )6 ) .  (4.37) 

K = l , .  . . , 5 .  (4.38) 

In many ways, j.&6 plays the role of the zero weights in B(n). 
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The phase factors 9 and ,y are identical to those defined in connection with our 

(4.39) 

previous discussion of D(5) and B(5)  SHO realisations. Indeed, 

cLl,,(P, 4 ;  r, s, t ) =  e ( p ,  4 ;  r, s, 4 761, 

where e was given in FFMa.  

4.3.2. Realisations of the irreps. The irreps have the familiar forms, in analogy with 
the classical groups. However, because of reality requirements, it was necessary to 
embed E(6) in a larger group in such a way that f of the larger group went into both 
fl and TI of E(6) (see relation (4.26)). We stress this feature by explicitly exhibiting 
the fl and TI 

and 

(4.40) 

(4.41) 

1-2p6, [is])  = ~ ' " ' ~ ( - 2 ( 6 ) ) / 0 ) .  

The irrep f3 = a is generated from the Kronecker product of f l  and TI =f2: 
[1  I l @ [ l 5 1 =  [ 1 6 i @  r 1  I ,  1 5 1  

fIOf2 = s Of, O(fIf2) (4.42) 

729 = 1 +78 +650. 

All other irreps can also be generated from Kronecker products. 

4.4. E(7) 

The simplest embedding of E(7)  is 

D(28) = E(7), (4.43) 

with the relations 

r l l l  + L16i 

f +fl (4.44) 

56 56. 

As in the case of E(6), it is convenient to introduce an unnormalised basis vector 
(see F F M a ) ,  this time p7: 

P7 P7 = f ,  
PP * Pq = fjPP4, P p  * P7 = 0, p,q = 1 ,  . . . ,  6. 

(4.45) 
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In what follows, we will choose index labels p ,  4,. . . , U = * l ,  . , . ,*6 and x = 1 7 .  
The E ( 7 )  generators in terms of SHO operators are given as follows. 
The generators in H, where 

H = c Cc,H(p)  +Cc, (H(7)  - H ( - 7 ) )  (4.46) 

are 

~ ( p )  = Z i p )  ~ ' " ) ( p + x ) + i  ~j: j ' (p  + q+ r +  s + t +  U ) ,  (4.47) 

H ( 7 )  " " ' ( p + 7 ) .  (4.48) 

The generators corresponding to roots of non-vanishing weight, with real phase 
factors, and explicit solutions given, are 

E ( , - , ) =  & ( p + q ) C ; ' , , , ,  [ N ' " ' ( p + x ,  q + x ) - " " " ( - p - x ,  - q - x ) ]  

+Crp,4) cL(e,(p,q;  r , s ,  1, u ) N l : , ' ( p - y ; r + s + t + u ) ,  (4.49) 

(4.50) E2(7) = E;,) [ ""'( p + 7 ,  p - 7 )  - ""q - p  - 7 ,  - p  + 7 ) ] ,  

the Hermitian conjugate of (4.50), and 

We note that only even (odd) numbers of negative indices p ,  q, r, s, t ,  U appear in 
+ ( p + q + r + s + t + u ) ( e , ,  t (e , ( (+)711;  r l + .  . .+r5)(N:l(p-q;  r + s + t + u ) ,  (0) ( P -  

~ : : ; ( - / 1 ( * ) 7 l r ~ + .  . . + r 5 ) = a ) , ,  I( ( - - l + r I + .  . . + r 5 ) a ( K ) ( - l ( ~ ) 7 ) .  

q+ r . .  .)). The new N'"' which appears in (4.51) is defined as 

(4.52) 

We have not succeeded in obtaining simple algebraic expressions for the real phase 
factors i,b(,, and tie, which appear in (4.49) and (4.51), respectively. However, they 
can easily be generated in tabular form from the following algebraic conditions, 
generated from the E ( 7 )  algebra, with E ( 7 )  phase solutions as given in F F M ~ :  

(4.53) 

(4.54) 

t ( e ) ( 7  11; rl ,  . . * > r5) = % e W  - 1 ;  -ri, . * . ,  - - ~ g ) ,  

t ieI(7l-p;  q , . . . ,  u ) t ( e ) ( 7 l - q ; ~ 9 . . * 9  u ) = n r P , 7 )  & ( I ~ I + l ) f l Y ~ , 7 )  &(IqI+l')* 

6(e1(7I!; r l , . . . , r ~ ) t ( e l ( - 7 I l ;  r lr . . . , r5)=(-1)"- ,  (4.55) 

i ,b (e) (P ,  4 ;  r, s, t, U )  = - ~ ( ~ + y ) t ( e ) ( 7 I ~ ;  4 , .  . . 3 u ) ( ( e ) ( 7 I q ; ~ ,  . * .  9 U ) ,  (4.56) 

where 1- are all possible values of negative indices. The tables can be generated, 
starting with the choice of a suitable set of and using (4.53)-(4.56) to obtain the 
remaining which appear in the 
appropriate expressions for D(6) and B(6).) We have done so, but will not further 
encumber the present work by listing our specific results. 

and the I + ~ , ~ ~ ' S .  (The latter are the phases 
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The scalar and f, irreps have the familiar forms, in analogy with the classical groups. 
The irreps fi- a and f3 can be generated as follows 

(4.57) 

(4.58) 

All other irreps can be generated from appropriate Kronecker products. 

4.5. E(8) 

The consideration of E( 8) is straightforward, but algebraically tedious, largely because 
of the eight irrep elements of vanishing weight in fl  = a. Because of this fact, the 
solutions for the complex phase factors need to be given in tabular form. In the 
interests of brevity, we have only given the algebraic constraint equations for these 
phase factors. 

The simplest embedding of E(8) is to choose 

D(124) =, E(8), (4.59) 

with the relations 

[111-[111 

f +.f,, f, = a. 

248 248 

(4.60) 

In what follows below, we will choose index labels p ,  4,.  , . , w = * l ,  . . . , *8 and  

The E(8) generators in terms of SHO operators are given as follows. 
The generators in H, where 

z = 121, 122, 123, 124 such that the A space to j~ space projection of Az is A, + 0. 

(4.61) 

The generators corresponding to roots of non-vanishing weight, with most of the 
phase solutions explicitly given, are 

1 
E ( , - q , = ~ C : P , q l  w ( p - 4 ;  z ) [ " " ' ( p - q ,  Z)+""'+(-P+q,  -213 

d ( p ,  4, r)[""'(p - r, - r +  4 )  - ""'+(-P+ r, r-411 

@ie)(P, 4 :  r , .  . . , w ) N I : ( P - q ;  T + S + .  . . + w ) ,  (4.63) 
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with 

""'( p - q, z) = a(") ' (  p - q ) a ' " ' ( z ) ,  

and 

with 

& o ) ( p  , . . . ,  w ;  z ) = ~ ( n - - n + ) ( - l ) ' & r ,  (4.65) 

and 

~ j ~ ~ ( - - / ~ - 1 ~ l r ~ + ,  . . + r 6 ) = a j ~ , ' + ( - ~ , - I 2 + r 1 + .  . , + r 6 ) a ( K ) ( - ~ l - / 2 )  (4.66) 

a generalisation of (4.22). In (4.65), n + ( n - )  are the number of positive (negative) 
indices p ,  q, .  . . , w. The factors in (4.63) and (4.64) are introduced so that the 
remaining coefficients are phase factors?. The phase factor d ( p ,  q, r )  is defined in (3.3) 
and Gie, first makes its appearance above in connection with D(8). Indeed, 

$ d p ,  q ;  r , .  . . , w ) =  e ( p ,  4 ;  r , .  . . , w ) ,  (4.67) 

where e was given in FFMa.  

We have not been able to obtain a general form for the remaining set of phase 
factors, w (  p - q ;  z). One can obtain a tabular form for them by generating them from 
the solutions for the set of simple roots. Since we are principally concerned in this 
paper with demonstrating the existence of SHO realisations of algebras and irreps, we 
will not give the details of the results, but will provide the equations constraining the 
w's for simple roots. 

A set of eight simple roots of E(8) can be taken to be, for any specific choice of 
p,  4 , .  . . w :  

Pi = P;, P I  = P i ,  Ps = P:, Pa = P:, Ps = P",  
Pa = PZ",:", P i  = P p W q r S t U V ,  Ps = P:, (4.68) 

p ,  q, .  . . , w = +1, .  . . , *8, IpI f 191 Z.. . # Iw( 

with the Dynkin-Patera ordering, J =  1 , .  . .8 ,  of simple roots and the definitions 

(4.69) 

t This is the sole example of all the cases we have considered, in which equation (4.47) of FFMb, which 
arises from the commutators (our equation (2 .3 ) ) ,  plays an essential role. 
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The conditions on the U ’ S  associated with Pi,. . . Ps and are 

C w ( J ;  z)w*(G; z ) = 4 P y . P F ,  

c w ( L  z )  exp[ - i ( - l ) ’~ /6 ]=46 i , ,  

1 w ( L  z )  exp[ i ( - l ) ‘~ /6 ]  =0,  
- - _ _ - _  

E =  1, 2, 3 ,4 ,  5 ,  8. 

(4.70) 

The scalar and f l  = a irreps have the familiar form. The irreps f2 and f3 can be 
generated in a fashion analogous to the method used in E(7):  

f2: [ 1 I 1  0 [ 1 I 1  = [ O I  0 [ 11 IO [ 171 0 [ 121 O [211 

fl Of1 = S  Ofi Of2 OA(2f,)OS(2fI)  (4.71) 

61 504 = 1  +248 +3875+30380+27000 

1 3 :  [1110[1,1=[1,1O[171 @[I81 O[l2l O [ l , ,  171 

f l 8 f 2  =f1 Of2 Of3 OA(2f l )O( f l f2 )  (4.72) 

961 000 =248 +3875+147250+30380-779247. 

All other irreps can also be generated from appropiate Kronecker products. 

5. Summary and discussion 

Our  aim in the present work was to realise systematically and simply both the algebras 
and all irreps of all simple compact Lie groups in terms of Bose oscillators (SHO).  In 
our uniform approach to all of these groups, the generators are bilinear expressions 
of sums of aL’s and  a’s (SHO creation and annihilation operators) and  the irreps are 
homogeneous polynomials of at’s of fixed order, operating on a vacuum state, of zero 
weight. In particular, the elementary spinor irreps of the orthogonal groups can be 
written in terms of a single SHO creation operator acting on the vacuum state. This is 
to be contrasted with the customary treatment of spinors in terms of Fermi oscillators 
(Clifford variables). In such a treatment the ‘vacuum state’ does not have zero weight, 
but is an  element of a spinor irrep. The other elements of the irreps are obtained by 
having different powers of Fermi oscillator creation operators act on this ‘vacuum 
state’. For D ( n ) ,  the ‘vacuum state’, together with all states formed by even powers 
of ai’s operating on this state, up  to the maximum possible such power, constitute the 
elements of one of the elementary spinor irreps; all possible odd powers of aT’s, 
operating on the ‘vacuum’, constitute the set of all elements of the other elementary 
spinor irrep. 

Two features of our results, the possibility of realising all classical Lie algebras 
and  their non-spinor irreps in terms of SHO’S, and  the need for the introduction of 
phase factors in the realisation of the algebras, are present in previous work. The 
novel features of the current work-the treatment of the exceptional groups and of 
spinor irreps of orthogonal groups-stem from a single ansatz: the systematic embed- 
ding of the group under consideration, g, in a larger group, 9, such that g is a non-regular 
subgroup of 9. 9 is always an  orthogonal group. It is B( N )  in the case of B( n )  and 
G(2) ,  and  is D ( N )  in the case of all the other compact Lie groups, with appropriately 
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chosen N’s. Given the rank, n, of g, the rank, N, of ‘3, is fixed so that the elementary 
non-spinor irrep of ’3 (called f )  goes into those of the elementary irreps of g, from 
which all other irreps can be conveniently constructed through Kronecker products. 
When g is an orthogonal group, this requirement is met by having the f irrep of 3 go 
into the sum of all the elementary irreps of g; for the exceptional groups, the f irrep 
of ’3 goes into the lowest dimensional irrep of g. For g = E(6), there are two such 
irreps, complex conjugates of each other, and the f irrep of ’3 = D(27), which is real, 
goes into the sum of them. 

The explicit solution of the embedding problem just outlined is made possible by 
two features of our approach. The first is the expression of root and weight space of 
all groups in terms of a set of mutually orthogonal basis vectors (Feldman er a1 1984a, b, 
abbreviated FFMa and F F M b  respectively). While such a choice of basis is a natural 
one in the case of the orthogonal groups, other, alternative, choices are frequently 
made for exceptional groups (Wybourne 1974, Dynkin 1957). The second element is 
the avoidance of the ‘address’ problem by the use of SHO operators, an issue which is 
discussed in connection with the presentation of the D(n)  results above, but which 
we will now summarise. 

In the embedding 9 2 g ,  with g a non-regular subgroup, generators of type E ,  in 
g are sums of generators 8, of 9. The coefficients in these sums (both magnitudes and 
phases) depend on the structure constants of both ’3 and g. This, in turn, requires 
that every element, A, of the root and weight space basis in ’3 be given a single numerical 
‘address’. This requirement is obviated by the use of SHO operators. To be sure, such 
operators must be suitably labelled, and we label them in a one-to-one relation to the 
weights of the g irreps into which the f irrep of 3 goes. However, we know that the 
commutator [a,  a ’ ]  is unity only if the pair at ,  a has the same label; otherwise it 
vanishes. An exact ‘address’ becomes irrelevant. 

This feature of SHO operators enables us to exhibit explicit algebraic solutions for 
the embedding problem for orthogonal groups of arbitrary rank, and also for the 
exceptional groups. The embedding problem would, in principle, be soluble without 
the use of SHO operators, but would, in practice, be tedious and unmanageable. Indeed, 
an unforeseen consequence of the present work is that when maximal non-regular 
subgroups of a group are to be constructed, as is often the case when chains of symmetry 
breaking are considered in particle physics, the construction can be most simply carried 
out in the SHO picture. 

The phase factors of the structure constants of g are, of course, still required to be 
explicitly known. There is, however, no ‘address’ problem in this case, and we can 
make use of the simple algebraic results for consistent solutions of these phase factors, 
obtained by FFMa.  These are necessary to get the results presented above, as are the 
algebraic techniques elucidated by F F M b  for carrying out the embedding of non-regular 
subgroups in a given group. A curious, and as yet not completely understood, feature 
of the current results is the reappearance of the phase solutions (and their obvious 
generalisations) obtained by FFMa,  whenever phase factors with the same algebraic 
structure occur in  the present work. 

All the phase complications occur in the realisation of the generators. The elemen- 
tary irreps of the classical groups are trivial in the SHO picture presented here, and are 
not much more complicated for the exceptional groups. The only additional pre- 
requisite for constructing all basic irreps is the trivial introduction of an additional 
label (superscript K )  so that antisymmetric products of aT’s can be generated. This 
approach has been used in previous work. 
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No general expressions are presented for all irreps (not even for all basic irreps), 
but the tools for constructing all irreps are provided. We also present a sufficient 
number of specific illustrations, so that the reader can obtain a particular irrep as 
needed. 

There is considerable redundancy in the irreps we construct. We have to eliminate 
some of them by means of 'SHO reduction', as discussed at the end of 9 3.1. For 
example, there is a redundant scalar irrep, which arises from a reduction of a product 
of two a"s. It is in the form of a homogeneous quadratic polynomial of at's, operating 
on the vacuum, and is 'SHO reduced' to the standard scalar, the vacuum state. Other, 
more trivial, redundancies, associated with different sets of ( K )  superscripts, remain, 
but could be eliminated by a simple ordering ansatz. There also exist alternative 
realisations of the algebras and therefore of the irreps. Two examples are provided 
by the groups E(7) and E(6), because of the regular maximal subgroup relations 
E(8) 3 E(7)@A(1) and E(7) 3 E(6)@U(1). Realisations of the E(7) and E(6) gen- 
erators, alternative to the ones we give above, can be obtained by taking appropriate 
subsets of the E(8) generators exhibited in P 4.5. Correspondingly, we obtain alternative 
realisations of the irreps of these groups. In particular, the adjoint irreps are linear, 
rather than quadratic in the a "S in this approach. However, we feel that the realisations 
of the algebras and irreps of E(7) and E(6) we present are simpler than these alternatives. 

In any case, there is at least one way of realising each irrep in terms of SHO 

operators, including irreps with spinor content. Since the SHO operators U' and a, as 
well as the SHO ground state (our vacuum state IO)), can easily be expressed in the 
coordinate basis, in terms of suitable coordinates and their derivatives, the realisations 
of the algebra and the other irreps can also be so expressed. 
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